

Nathan Schumaker, Allen Brookes, Chad Wilsey and the Subsequent Speakers

OOS 20 - Recent Advances in Individual-Based Population Modeling with Applications to Conservation and Management

- Focus. Modern simulation models and their use in conservation biology and landscape ecology.
- Why This Focus? Models are increasingly required to forecast plant and animal responses to future conditions and disturbance patterns.
- Today's Talks. This introduction, plus nine presentations illustrating a wide range of applications of the *HexSim* model.

HexSim Past, Present, Future

- Past. HexSim grew out of the PATCH model. Work on PATCH dates back to 1995. HexSim development began in 2007.
- Present. HexSim 2.0 debuted in February 2011. Significant enhancements and corrections have since been made. Version 3.0 (in development) will include aquatic populations.
- Future. Case studies and outreach. Subsequent enhancements will reflect user-defined needs!

Why HexSim?

- It's a free, modern, and generic multi-species, multi-stressor, modeling framework.
- It's spatially-explicit, individual-based, and each individual may possess unique groups of traits.
- Simulations range from simple to complex, and can capture population and stressor interactions.

www.hexsim.net

- Landscape structure and population size together limit resource acquisition
- Resource acquisition and disturbance class together control fitness
- Fitness and disease control vital rates
- Roads impact the movement process
- Movement mediates disease spread

Interacting Stressors

Interacting Populations

Sources, Sinks, Connectivity

- Multiple spatial sampling schemes can be used simultaneously to quantify the landscape's source-sink and connectivity properties.
- The sampling schemes are completely independent of, and have absolutely no impact on the simulated population dynamics.
- The source-sink and connectivity metrics that result factor in species and stressor interactions, the effects of movement barriers, etc.

Example from US FWS Spotted Owl Model Deschutes NF Six Rivers NF

Sources and Sinks in HexSim

National Forest	Туре	Percent of Worst Sink Or Best Source					
Deschutes	Sink	100.0					
Winema	Sink	44.8					
Siuslaw	Sink	5.5					
Okanogan	Sink	1.7					
Olympic	Sink	0.4					
Mount Baker	Source	0.1					
Gifford-Pinchot	Source	3.1					
Wenatchee	Source	9.0					
Mount Hood	Source	17.4					
Siskiyou	Source	18.3					
Willamette	Source	42.0					
Mendocino	Source	42.2					
Klamath	Source	42.9					
Rogue River	Source	56.6					
Shasta-Trinity	Source	66.4					
Umpqua	Source	69.3					
Six Rivers	Source	100.0					

Connectivity in HexSim

For each sampling scheme, HexSim will:

- Track the flux of individuals moving between locations, incorporating survival and reproduction into the rates
- Construct a projection matrix that can also be used to estimate λ
- Does not record paths used to move between locations (but see Carroll / CAT talk)

National Forest Connectivity Example from US FWS Spotted Owl Model

	Mount Baker	Gifford Pinchot	Willamette	Rogue River	Shasta-Trinity	Olympic	Siskiyou	Okanogan	Suislaw	Deschutes	Winema	Six Rivers	Mendocino	Mount Hood	Wenatchee	Klamath	Umpqua
Mount Baker	0.9110	0.0001						0.0083							0.0153		
Gifford Pinchot	0.0004	0.9461												0.0016	0.0056		
Willamette			0.9501	0.0000					0.0001	0.0381				0.0190			0.0176
Rogue River			0.0000	0.8532			0.0087			0.0000	0.0560					0.0175	0.0199
Shasta-Trinity				0.0000	0.9157							0.0325	0.0130			0.0115	
Olympic						0.7083											
Siskiyou				0.0066			0.9122					0.0026				0.0046	
Okanogan	0.0001							0.8738							0.0002		
Suislaw			0.0000				0.0000		0.8692					0.0000			
Deschutes			0.0052	0.0001						0.8989				0.0000			0.0005
Winema				0.0158						0.0000	0.8823					0.0000	0.0000
Six Rivers				0.0000	0.0234		0.0060					0.9000	0.0082			0.0276	
Mendocino					0.0062							0.0042	0.9420				
Mount Hood		0.0023	0.0059							0.0001				0.9487			
Wenatchee	0.0399	0.0041						0.0094							0.9441		
Klamath				0.0269	0.0063		0.0090				0.0001	0.0214				0.9011	
Umpqua			0.0230	0.0309						0.0074	0.0001						0.9252

Disease Dynamics

Environmentally- Mediated Transmission

Direct Transmission

Landscape Genetics in HexSim

Works With Both Neutral and Adaptive Alleles

Speaker: Peter Singleton

Spotted Owl – Barred Owl Competition

Spotted Owl

Barred Owl

Speaker: Chad Wilsey

Black-capped Vireo – Cowbird Interactions

Speaker: Theresa Nogeire

Kit Fox Responses to Multiple Stressors

Kit Fox Range Rodenticides

Speaker: Carlos Carroll The Connectivity Analysis Toolkit (CAT)

Connectivity Ana	alysis Toolkit	_
Help About		
HexMaps Graphs	Connectivity Output	
Function	[Beta] Maximum Flow	
Graph File		Browse
Input File(s) Type	Generic Data ▼	
Input File		Browse
(Unused)		Browse
Maximum Distance	0.0000	
Output File		Browse
☐ Use Scaling		
☐ No Data Value	-9999	
Number of Threads	8	
Supply Fraction	1.0000	
Probability	0.8500	
	Run	

Speaker: Gisselle Yang Xie

Mountain Yellow-Legged Frogs and the Chytrid Fungus

Speaker: Michael TumaDesert Tortoise Population Dynamics

Speaker: Patrick Huber Tule Elk Reintroduction Strategies

Speaker: Jeffrey Dunk

Spotted Owl Conservation

Speaker: Jennifer Day

Adding Realism to Landscape Genetics

Acknowledgements

- Kevin Djang developed the HexSim model GUI.
 Josh Lawler contributed to all aspects of HexSim.
- Carlos Carroll, Chris Jordan, and David Olszyk provided invaluable support at key times.
- The US EPA supported Schumaker, Brookes, and Djang. SERDP (grant number SI-1541) supported Brookes, and Lawler.
- We are indebted to many users who happily documented HexSim's (previous) shortcomings!